REACTIONS OF ALKANES:

CONTENTS

- **Reactivity Considerations**
- **Chlorination and Bromination of Alkanes**
 - **Reactivity-Selectivity Principle**
- Radical Substitution of Benzylic and Allylic Hydrogens
 - **Stereochemistry of Radical Substitution**
- **No Radical Reactions in Biological Systems**

RADICALS

Sources include:

- Hydrogen peroxide
 - Alkyl peroxides •
- Light causes homolysis of the weak O-O bond -

HETEROLYSIS & HOMOLYSIS

Homolysis produces radicals, which are very reactive species

RADICAL CHAIN REACTIONS

Initiation turns stable species into radicals by breaking a bond.

RADICAL CHAIN REACTIONS

Propagation causes products to form without resulting in net consumption of radicals. (production = consumption)

RADICAL CHAIN REACTIONS

Termination results in net radical destruction. Generally occurs when reactants are used up.

CHLORINATION AND BROMINATION OF ALKANES

mechanism for the monochlorination of methane

PRODUCT DISTRIBUTION

CHLORINATION RATES

relative rates of alkyl radical formation by a chlorine radical at room temperature

CHLORINATION PRODUCT DISTRIBUTION

$$\begin{array}{ccccc} CH_3 & CH_3 & CH_3 & CH_2 CI & CH_3 & CH_3 & CH_3 \\ CH_3CCH_2CH_2CH_2CHCH_3 + Cl_2 & \stackrel{\Delta}{\longrightarrow} & CH_3CCH_2CH_2CHCH_3 + CH_3C - CHCH_2CHCH_3 + \\ CH_3 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3CI \\ 2,2,5-trimethylhexane & 9 \times 1.0 = 9.0 & 2 \times 3.8 = 7.6 \\ & \frac{9.0}{35} = 26\% & \frac{7.6}{35} = 22\% \end{array}$$

$$\begin{array}{c} CH_3 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\ CH_3CCH_2CHCHCH_3 + CH_3CCH_2CH_2CH_3 + CH_3CCH_2CH_2CHCH_2CI + HCI \\ CH_3 & CI & CH_3 & CI & CH_3 \\ 2 \times 3.8 = 7.6 & 1 \times 5.0 = 5.0 & 6 \times 1.0 = 6.0 \\ & \frac{7.6}{35} = 22\% & \frac{5.0}{35} = 14\% & \frac{6.0}{35} = 17\% \end{array}$$

BROMINATION RATES

relative rates of radical formation by a bromine radical at 125 °C

REACTIVITY-SELECTIVITY PRINCIPLE

The very reactive chlorine atom will have lower selectivity and attack pretty much any hydrogen available on an alkane

The less reactive bromine atom will be more selective and tends to react preferentially with the easy targets, i.e. benzylic/allylic > 3° > 2° > 1°

RADICALS

Stability of alkyl radicals is similar to stability of carbocations

CRUDE RADICAL STABILITY INDEX

Add 1 for each attached carbon. Add 3 for adjacent double bond or phenyl ring. Radical equally stable on double bond carbon as on single bonded carbon Profile similar to carbocations but resonance contributes more to radical stability, and radical is OK on C=C.

ADDITION OF RADICALS

Source of confusion regarding addition of HBr for years; can't do ionic product analysis with radicals!!!

RADICAL ADDITION IS UNIQUE TO HYDROGEN BROMIDE

HBr and peroxide goes anti-Markovnikov!

HYDROGEN HALIDE ADDITION IN THE PRESENCE OF PEROXIDE

Hydrogen peroxide has same effect on hydrogen bromide addition to an alkyne as to an alkene (reversed regioselectivity).

BENZYLIC/ALLYLIC RADICALS

- Benzylic and allylic radicals are even more stable than tertiary alkyl radicals
- It should be easy for a halogen radical to abstract a benzylic or allylic hydrogen

BENZYLIC/ALLYLIC RADICALS

Problem in making allylic radical is the greater likelihood that HBr or Br_2 will add electrophilically to the double bond rather than making the allylic radical.

BENZYLIC/ALLYLIC RADICALS

Problem solved with *N*-bromosuccinimide (NBS) is a good reagent for supplying low concentrations of bromine radical

NBS doesn't produce much Br₂ or HBr so it <u>only</u> replaces benzylic/allylic H's

BENZYLIC AND ALLYLIC RADICALS

Allylic or benzylic radical stabilized by resonance. Only H which leads to most stable set of resonance structures is removed (like C+). Unlike C+ case no thermo or kinetic product exists; Br found

on all radical-bearing carbons

STEREOCHEMISTRY OF RADICAL SUBSTITUTION

a radical intermediate

Radicals give both enantiomers when they make products like carbocations

REACTIONS OF ALKENES - CATALYTIC HYDROGENATION

$$= \left\langle \begin{array}{c} + H_2 \end{array} \xrightarrow{\text{Pt, Pd}} H - \begin{array}{c} | \\ - C - C - H \end{array} \right\rangle$$

Heat of hydrogenation - the heat liberated during this reaction. ΔH is ~125 kJ/mol for each double bond in the compound.

MECHANISM OF ALKENE HYDROGENATION

MECHANISM OF ALKENE HYDROGENATION

Hydrogenation is stereospecific.

The two hydrogens add to the same side of the double bond - a syn addition.

REACTIONS OF ALKENES

The π electrons are less tightly held than the σ electrons. The double bond therefore acts as a source of electrons - a base – a nucleophile.

It reacts with electron deficient compounds - acids - electrophiles.

ELECTROPHILIC ADDITION

Electron seeking reagents are called electrophilic reagents.

The typical reaction of alkenes is one of electrophilic addition - an acid - base reaction.

$$c = c + YZ \longrightarrow -c + c + z + z$$

Don't forget that free radicals are electron deficient. They undergo addition reactions with alkenes.

ADDITION OF HYDROGEN HALIDES

HX = HCI, HBr, HI

ADDITION OF HYDROGEN HALIDES

Only 2-chloropropane is formed

MARKOVNIKOV'S RULE

In 1869, Markovnikov proposed that in the addition of an acid to an alkene, the hydrogen of the acid bonds to the carbon which is already bonded to the greater number of hydrogens.

MARKOVNIKOV'S RULE

$CH_3CH_2CH=CHCH_3 + HI \longrightarrow$

 $CH_3CH_2CHICH_2CH_3 + CH_3CH_2CH_2CHICH_3$

Each carbon of the double bond is bonded to one H therefore both isomers are formed.

MARKOVNIKOV ADDITION - A REGIOSELECTIVE REACTION

These reactions are said to be **regioselective** because only one of the two possible directions of addition occurs.

Regioselectivity - the preferential formation of one isomer in those situations where a choice is possible.

HBR - THE PEROXIDE EFFECT

1933, Kharasch and Mayo

ADDITION OF SULFURIC ACID

HYDRATION

a Markovnikov addition

THE MECHANISM OF THE ADDITION

 $HX = HCI, HBr, HI, H_2SO_4, H_3O^+$

AN EXAMPLE

ORIENTATION

ORIENTATION

A MORE GENERAL "RULE"

Electrophilic addition to a carbon - carbon double bond involves the intermediate formation of the most stable carbocation.

Why? Let's look at the transition state:-

A MORE GENERAL "RULE"

CARBOCATION REARRANGEMENTS

OXYMERCURATION

OXYMERCURATION

An anti addition via a mercurinium ion:

OXYMERCURATION

Why do we observe Markovnikov addition?

In the mercurinium ion, the positive charge is shared between the more substituted carbon and the mercury atom.

Only a small portion of the charge resides on this carbon but it is sufficient to account for the orientation of the addition but is insufficient to allow a rearrangement to occur.

HYDROBORATION

H.C. Brown and G. Zweifel, *J. Am. Chem. Soc.*, <u>83</u>, 2544 (1961)

Brown was co-winner of the 1979 Nobel Prize in Chemistry.

HYDROBORATION

trans-2-methylcyclopentanol

 $(CH_3)_3CCH=CH_2 \longrightarrow (CH_3)_3CCH_2CH_2OH$

no rearrangement no carbocation!

HYDROBORATION

HYDROBORATION - THE MECHANISM

$$CH_{3}CH=CH_{2} \xrightarrow{1. (BH_{3})_{2}} CH_{3}CH_{2}CH_{2}OH$$

$$CH_{3}CH=CH_{2} \xrightarrow{HX} \left[CH_{3}CH=CH_{2} \right]^{\ddagger} CH_{3}CHCH_{3} + X$$

$$H$$

$$\chi \delta -$$

HYDROBORATION - THE MECHANISM

HYDROBORATION - THE MECHANISM

ADDITION OF HALOGENS

1,2-dibromopropane

MECHANISM OF X₂ ADDITION

MECHANISM OF X₂ ADDITION

STEREOSPECIFIC REACTIONS

$CH_3CH=CHCH_3 \xrightarrow{Br_2} CH_3CHBrCHBrCH_3$

(Z)-2-butene gives racemic 2,3-dibromobutane and no meso compound is formed.

(E)-2-butene gives only meso-2,3-dibromobutane.

A reaction is stereospecific if a particular stereoisomer of the reactant produces a specific stereoisomer of the product.

SYN AND ANTI ADDITION

BROMINE ADDITION - AN ANTI ADDITION

I. Roberts and G.E. Kimball, *J. Am. Chem. Soc.*, <u>59</u>, 947 (1937)

THE BROMONIUM ION

HALOHYDRIN FORMATION

HALOHYDRIN FORMATION

UNSYMMETRIC ELECTROPHILES

In the electrophilic addition of an unsymmetric reagent, the electrophilic part adds to the less substituted carbon of the alkene unit:

$$CH_{3}CH=CH_{2} + A-B \longrightarrow CH_{3}CH-CH_{2}$$

$$H_{3}CH=CH_{2} + A-B \longrightarrow CH_{3}CH-CH_{2}$$

$$H_{3}CH=CH_{2} + A-B \longrightarrow CH_{3}CH-CH_{2}$$

FREE RADICAL ADDITION REACTIONS

IONIC VS RADICAL ADDITION

POLYMERIZATION

A polymer is a long chain molecule made up of structural units (monomers) joined together.

Initiation

Chain termination

combination

Chain termination

disproportionation

+

EXAMPLES

- G monomer
- CH₂=CHCI Cl

vinyl chloride

CH₂=CHCN CN acrylonitrile

-CH₂CHCI-CH₂CHCI-CH₂polyvinyl chloride, PVC -CH₂CHCN-CH₂CHCNpolyacrylonitrile

polymer

Orlon, Acrilon

EXAMPLES

methyl methacrylate

poly(methyl methacrylate) Plexiglas, Lucite
POLYMERIZATION

The addition of other compounds can modify the polymerization:

CARBENES

Carbenes (and carbenoids) add to alkenes in a stereospecific manner to form cyclopropanes.

CARBENES

HYDROXYLATION

OZONOLYSIS

OZONOLYSIS

$$CH_{3}CH_{2}CH=CHCH_{3} \xrightarrow{1. O_{3}} CH_{3}CH_{2}C=O + O=CCH_{3}$$

$$\begin{array}{c} H & CH_3 \\ C = C & H_3 \\ H_3C & CH_3 \end{array} \xrightarrow{1. O_3} CH_3CHO + O \xrightarrow{CH_3} CH_3 \\ \hline 2. Zn/H_2O & CH_3CHO + O \xrightarrow{CH_3} CH_3 \end{array}$$

KMNO₄ OXIDATION

ADDITION OF HALOGEN TO ALKYNES

ADDITION OF HX TO ALKYNES

Does this seem reasonable?

This carbocation should be destabilized by the inductive effect of the CI!

