Two - way analysis of variance

This is the simplest level of multivariate ANOVA. Here we have a second treatment variable of interest. What if we wanted to know if different sexes reacted to increasing levels of a drug ?

We now need three different indexes :.

i for different treatment groups (or A factor).

j for different block (or **B** factor).

k for different observations within blocks.

The number of A factor levels = \mathbf{a}

			A		Sum	Mean
В	1	2	i	a		
1	X ₁₁	X ₂₁	X _{i1}	X _{a1}	X.1	$\overline{\mathbf{X}}_{\cdot 1}$
2	X ₁₂	X ₂₂	X _{i2}	X _{a2}	X.2	$\overline{\mathbf{X}}_{\cdot 2}$
•	•	•			•	•
j	X_{1j}	$X_{2j} \ldots \\$	X _{ij}	X _{aj}	X. _j	$\overline{\mathbf{X}}_{\cdot \mathbf{j}}$
•	•	•	•		•	•
b	X _{1b}	X _{2b}	X _{ib}	X _{ab}	X. _b	X. _b
Sum	X _{1.}	X _{2.}	X _{i.}	X _{a.}	X	
Mean	X _{1.}	$\overline{\mathbf{X}}_{2.}$	$\overline{\mathbf{X}}_{\mathbf{i.}}$	X _{a.}		<u>X</u>

The number of B factor levels = \mathbf{b}

ANOVA table	ANOVA	table
-------------	-------	-------

S.O.V.	df.	SS	MS	$\mathbf{F}_{\mathrm{statistic}}$	F _{tab.}	F _{tab.}
					0.01	0.05
$A_{(between A levels)}$	a-1	SSA	MSA	F _A =MSA/MSE		
B _(between B levels)	b-1	SSB	MSB	F _B =MSB/MSE		
Error _(within)	(a-1)(b-1)	SSE	MSE			
Total	ab-1	SST				

$$SST = \sum \sum (Xij - X..)^{2}$$
$$= \sum \sum Xij^{2} - CF$$
$$CF = \frac{X.^{2}}{ab}$$
$$SSA = \sum \sum (Xi. - X..)^{2}$$
$$= \frac{\sum Xi.^{2}}{b} - CF.$$
$$SSB = \frac{\sum X.j^{2}}{a} - CF.$$
$$SSE = \sum \sum (Xij - Xi. - X.j - X..)^{2}$$
$$= SST - SSA - SSB$$
$$SST = SSA + SSB + SSE$$

Notes:.

1- The stander error of **a** mean is :.

$$S_{Xi.} = \sqrt[2]{\frac{MSE}{b}}$$

2- The stander error of **b** mean is :.

$$S_{X,j} = \sqrt[2]{\frac{MSE}{a}}$$

3- The stander error of the different between two means

of **A** is :.

$$\mathbf{S}_{\mathrm{X1.-X2.}} = \sqrt[2]{\frac{2MSE}{b}}$$

4- The stander error of the different between two means of **B** is :.

$$\mathbf{S}_{\mathrm{X.1-X.2}} = \sqrt[2]{\frac{2MSE}{a}}$$

5- H_{0A} : $X_{1.} = X_{2.} = \dots = X_{i.}$ vs H_{aA} : at least one mean of A is not equal to the others.

 $H_{0B}: X_{.1} = X_{.2} = \dots = X_{.j}$ vs H_{aB} : at least one mean of B is not equal to the others.

Example:.

A study was conducted to investigate of effect cars movement in Karbala city on air pollution. Five samples are taken from different sites at four different months. The table below provides data on quantitative of sold material (mg/m^3) . Test if there is difference in pollution level between the sites or between the months.

Time A		Sum				
	1	2	3	4	5	
Oct.	76	67	81	56	51	331
Jan.	82	69	96	59	70	376
May.	68	59	67	54	42	290
Sept.	63	56	64	58	37	278
Sum	289	251	308	227	200	1275

Air pollution in five different sites from Karbala city.

Answer:.

X= 1275			
X _{1.} = 331	X _{2.} =376	X _{3.} = 290	X _{4.} =278
X _{.1} =289 X.	₂ =251 X. ₃ =	308 X. ₄ =227	7 X. ₅ =200
$CF. = \frac{(X.)^2}{ab} =$	$\frac{(1275)^2}{4\times 5} = 812$	281.25	
$\mathbf{SST} = \sum \sum X i j$	i ² — CF		
$=[(76)^2$	$+(67)^2 + \ldots + (3)^2$	$(57)^2] - 81281.23$	5 = 3751.75
$\mathbf{SSA} = \frac{\sum Xi.^2}{b} - $	CF.		
$=\frac{331^2+37}{2}$	$\frac{6^2 + 290^2 + 278^2}{5} - \frac{1}{5}$	81281.25 = 11	82.95
$\mathbf{SSB} = \frac{\sum X.j^2}{a} - $	CF.		
$=\frac{289^2+25}{2}$	$\frac{1^2+308^2+227^2+2}{4}$	$\frac{200^2}{2} - 81281.25$	5 = 1947.50

SSE = SST - SSA - SSB

ANOVA table

S.O.V.	df.	SS	MS	F _{stat} .	F _{tab.0.01}	F _{tab.0.05}
Α	3	1182.95	394.32	F _A =10.72	5.95	3.49
В	4	1947.50	486.875	$F_{B}=13.24$	5.41	3.26
Error	12	441.30	36.775			
Total	19	3571.75				

The results indicate there is significant difference in pollution degree between the months when we compare F_A with $F_{(3, 12)}$ at $\alpha : 0.01$ and 0.05 levels. In addition to this, there is significant difference in pollution degree between the sites when we compare F_B with $F_{(4, 12)}$ at $\alpha : 0.01$ and 0.05 levels.

Now, can you determine the site is more than the others or the month is more than the others in pollution degree???

The answer of the above question will study in the following lecture.