$EX2/\!/$ calculate the emission of Methane from solid waste in a region their population (9603600) , production of waste per day equal to 0.5 kg / person. Day , Fraction of MSW disposed to landfill 0.8, Methane correction factor=0.74 ,Fraction of Carbon releases as Methane=0.5 , DOC=0.21 , DOCf=0.77, Recovered Methane perYear=0.

	A	В	С	D	Е
	Population whose Waste goes to SWDSs (Urban or Total) (persons)	MSW Generation Rate (kg/capita/day)	Annual Amount of MSW Generated (Gg MSW)	Fraction of MSW Disposed to SWDSs (Urban or Total)	Total Annual MSW Disposed to SWDSs (Gg MSW)
			$C = (A \times B \times 365)/1 \ 000$		$E = (C \times D)$
1996	9603600	0.5	1752.66	0.8	1402.13

	STEP 1	STEP 2	STEP 3					STEP 4			
	A	В	С	D	Е	F	G	Н	J	K	L
	Total	Methane	Fraction	Fraction	Fraction	Conv	Potential	Realised	Gross	Recov	Net
			of	of	of	ersio	Methane			ered	Annual
		G .:		Dog		n				3.5.4	
	Annual	Correctio	DOC in	DOC which	Carbon	Ratio	Generation Rate	(Country-	Annual	Metha	Methane
	Ailliuai	n	DOC III	WIIICII	Released	Kano	per Unit of	(Country-	Ailliuai	ne per	Generatio
	MSW	Factor	MSW	Actually	as		Waste	specific)	Methane	Year	n
					21.0		(Gg	-F			
							CH ₄ /Gg		Generati	(Gg	
	Disposed	(MCF)		Degrades	Methane		MSW)	Methane	on	CH ₄)	(Gg CH ₄)
	a								(Gg		
	to SWDSs							Generation	CH ₄)		
	(Gg MSW)							Rate per Unit			
	(Og MSW)							of Waste			
								(Gg CH ₄ / Gg MSW)			
							G= (C x D		J= (H x		
YEAR							x E x F)	$H=(B \times G)$	A)		L=(J-K)
1996	1402.1256	0.74	0.21	0.77	0.5	16/12	0.11	0.08	111.85	0	111.85

M	N
(1-	
Oxidation	
Correctio	
n Factor	Net
for	Methane
Methane)	generation
1-OX	LxM
1	111.85