

Solution Concentration

Read 281 - 283. Try questions 1 - 8 (show work)
Concentration = quantity of solute quantity of solution (not solvent)
There are 3 basic ways to express concentration: 1) percentages, 2) very low concentrations, and 3) molar concentrations

1) \% concentration can be in V/V, W/W, or W/V

- Like most \%s, V/V and W/W need to have the same units on top and bottom.
- W/V is sort of in the same units; V is mostly water and water's density is $1 \mathrm{~g} / \mathrm{mL}$ or $1 \mathrm{~kg} / \mathrm{L}$
$3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} / 100 \mathrm{~mL}$ solution $\approx 3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} / 100 \mathrm{~g}$ solution

Solution Concentration

2) Expressing concentrations in parts per million (ppm) requires the unit on top to be 1,000,000 times smaller than the unit on the bottom E.g. $1 \mathrm{mg} / \mathrm{kg}$ or $\mu \mathrm{g} / \mathrm{g}$

- Multiples of 1000 are expressed in this order $\mu_{-}, m_{-},{ }_{-}, k_{-}$("," is the base unit) (pg.631)
- Notice that any units expressed as a volume must be referring to a water solution ($1 \mathrm{~L}=1 \mathrm{~kg}$)
- For parts per billion (ppb), the top unit would have to be 1,000,000,000 times smaller

3) Molar concentration is the most commonly used in chemistry. Ensure that units are mol/L.
1. Percentage concentration (V/V, W/V, W/W), very low concentration, molar concentration
2. $\% \mathrm{~V} / \mathrm{V}=4.1 \mathrm{~L} / 55 \mathrm{~L}=7.5 \% \mathrm{~V} / \mathrm{V}$
3. $\% \mathrm{~W} / \mathrm{V}=16 \mathrm{~g} / 50 \mathrm{~mL}=32 \% \mathrm{~W} / \mathrm{V}$
4. $\% \mathrm{~W} / \mathrm{W}=1.7 \mathrm{~g} / 35.0 \mathrm{~g}=4.9 \% \mathrm{~W} / \mathrm{W}$
5. $8 \mathrm{ppm}=8 _/ 1 \mathrm{~L}$, the units should be 1 million times smaller than 1 L (or 1 kg): $8 \mathrm{ppm}=8 \mathrm{mg} / \mathrm{L}$ so the mass in 1 L is 8 mg .
6. $3.2 \mathrm{mg} / 0.59 \mathrm{~kg}=5.424 \mathrm{mg} / \mathrm{kg}=5.4 \mathrm{ppm}$
7. a) ppb is 1000 times smaller than ppm b) $1 \mathrm{~g} / 10^{9} \mathrm{~mL}, 1 \mathrm{mg} / 1000 \mathrm{~L}, 1 \mu \mathrm{~g} / \mathrm{L}$,
$1 \mathrm{mg} / \mathrm{kL}, 1 \mathrm{mg} / \mathrm{Mg}, 1 \mu \mathrm{~g} / \mathrm{kg}$
8. $0.11 \mathrm{~mol} / 0.060 \mathrm{~L}=1.8 \mathrm{~mol} / \mathrm{L}$

More practice

1. What is the \% W/W of copper in an alloy when 10 g of Cu is mixed with 250 g of Zn ?

$$
10 \mathrm{~g} / 260 \mathrm{~g}=3.8 \% \mathrm{~W} / \mathrm{W}
$$

2. What is approximate $\% \mathrm{~V} / \mathrm{V}$ if 30 mL of pure ethanol is added to 250 mL of water?
$30 \mathrm{~mL} / 280 \mathrm{~mL}=11 \% \mathrm{~V} / \mathrm{V}$ (in reality may be off)
3. What is the $\% \mathrm{~W} / \mathrm{W}$ if 8.0 g copper is added to enough zinc to produce 100 g of an alloy?)

$$
8.0 \mathrm{~g} / 100 \mathrm{~g}=8 \% \mathrm{~W} / \mathrm{W}
$$

Answers

11. $500 \mathrm{~mL} \times 70 \mathrm{~mL} / 100 \mathrm{~mL}=350 \mathrm{~mL}$
12. $250 \mathrm{~mL} \times 1000=250 \mathrm{~L}$
$250 \mathrm{~L} \times 3 \mathrm{~kg} / 100 \mathrm{~L}=7.5 \mathrm{~kg}$
13. $1.5 \mathrm{ppm}=1.5 \mathrm{mg} / \mathrm{L}$
$0.250 \mathrm{~L} \times 1.5 \mathrm{mg} / \mathrm{L}=0.38 \mathrm{mg}$
14. $75 \mathrm{~L} \times 0.055 \mathrm{~mol} / \mathrm{L}=4.1 \mathrm{~mol}$
15. $0.050 \mathrm{~L} \times 5.0 \mathrm{~mol} / \mathrm{L}=0.25 \mathrm{~mol}$
16. $0.500 \mathrm{~mol} \times 1 \mathrm{~L} / 1.24 \mathrm{~mol}=0.403 \mathrm{~L}$ or 403 mL 17. $0.14 \mathrm{~mol} \times 1 \mathrm{~L} / 2.6 \mathrm{~mol}=0.0538 \mathrm{~L}=54 \mathrm{~mL}$
