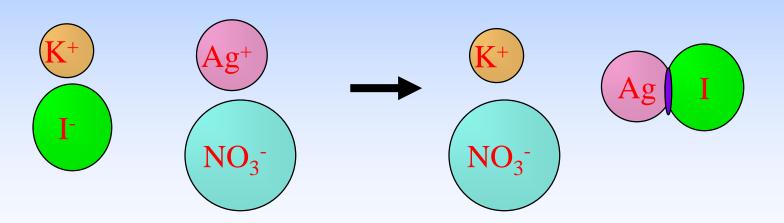

Reactions in Aqueous Solutions

Chapter 7

Sodium Reacting with Water.

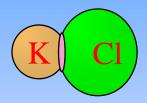


Predicting Whether a Reaction Will Occur

- "forces" that drive a reaction
- formation of a solid
- formation of water
- transfer of electrons
- formation of a gas
- when chemicals (dissolved in water) are mixed and one of these 4 things can occur, the reaction will generally happen

Precipitation Reactions

- in all precipitation reactions, the ions of one substance are exchanged with the ions of another substance when their aqueous solutions are mixed
- At least one of the products formed is insoluble in water
 KI(aq) + AgNO₃(aq) → KNO₃(aq) + AgI(s)

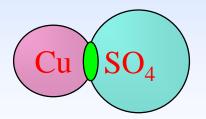

Dissociation

- ionic compounds
 - metal + nonmetal (Type I & II)
 - metal + polyatomic anion
 - polyatomic cation + anion
- when ionic compounds dissolve in water the anions and cations are separated from each other; this is called dissociation
- we know that ionic compounds dissociate when they dissolve in water because the solution conducts electricity

Dissociation

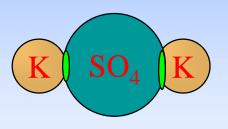
 potassium chloride dissociates in water into potassium cations and chloride anions

$$KCI(aq) = K^+(aq) + CI^-(aq)$$



 copper(II) sulfate dissociates in water into copper(II) cations and sulfate anions

$$CuSO_4(aq) = Cu^{+2}(aq) + SO_4^{2-}(aq)$$



Dissociation

 potassium sulfate dissociates in water into potassium cations and sulfate anions

$$K_2SO_4(aq) = 2 K^+(aq) + SO_4^{2-}(aq)$$

Process for Predicting the Products of a Precipitation Reaction

- Determine what ions each aqueous reactant has
- Exchange lons
 - (+) ion from one reactant with (-) ion from other
- Balance Charges of combined ions to get formula of each product
- Balance the Equation
 - count atoms
- Determine Solubility of Each Product in Water
 - solubility rules
 - if product is insoluble or slightly soluble, it will precipitate

Solubility Rules

- Most compounds that contain NO₃⁻ ions are soluble
- Most compounds that contain Na⁺, K⁺, or NH₄⁺ ions are soluble
- Most compounds that contain Cl⁻ ions are soluble, except AgCl, PbCl₂, and Hg₂Cl₂
- Most compounds that contain SO₄²⁻ ions are soluble, except BaSO₄, PbSO₄, CaSO₄
- Most compounds that contain OH⁻ ions are slightly soluble (will precipitate), except NaOH, KOH, are soluble and Ba(OH)₂, Ca(OH)₂ are moderately soluble
- Most compounds that contain S²⁻, CO₃²⁻, or PO₄³⁻ ions are slightly soluble (will precipitate)

Table 7.1 General Rules for Solubility of Ionic Compounds (Salts) in Water at 25 °C

- 1. Most nitrate (NO₃⁻) salts are soluble.
- 2. Most salts of Na⁺, K⁺, and NH₄⁺ are soluble.
- 3. Most chloride salts are soluble. Notable exceptions are AgCl, PbCl₂, and Hg₂Cl₂.
- 4. Most sulfate salts are soluble. Notable exceptions are BaSO₄, PbSO₄, and CaSO₄.
- 5. Most hydroxide compounds are only slightly soluble.* The important exceptions are NaOH and KOH. Ba(OH)₂ and Ca(OH)₂ are only moderately soluble.
- 6. Most sulfide (S^{2-}), carbonate (CO_3^{2-}), and phosphate (PO_4^{3-}) salts are only slightly soluble.*

^{*}The terms *insoluble* and *slightly soluble* really mean the same thing: such a tiny amount dissolves that it is not possible to detect it with the naked eye.

Na+, K+, NH₄+ salts

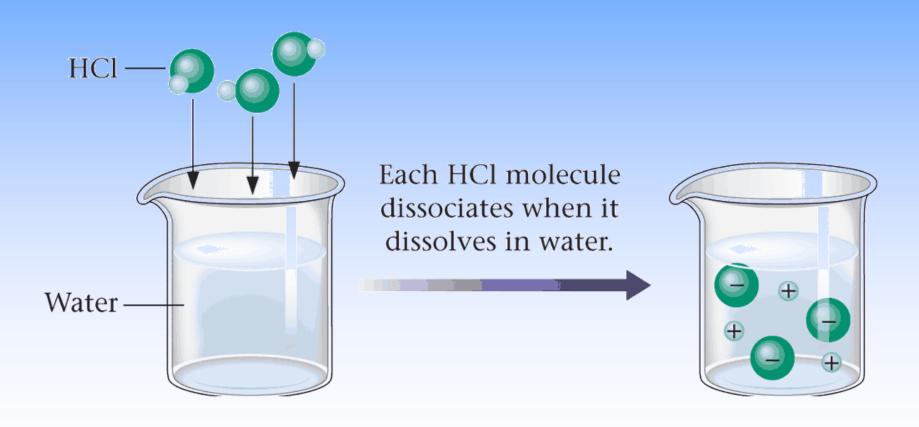
SO₄²⁻ salts Except for those containing Ba²⁺, Pb²⁺, Ca²⁺

Ag+, Hg₂²⁺, Pb²⁺

(b) Insoluble compounds

OH⁻ salts Except for those containing Na⁺, K⁺, Ca²⁺, Ba²⁺

Ionic Equations


 equations which describe the chemicals put into the water and the product molecules are called molecular equations

$$KCI(aq) + AgNO_3(aq) \rightarrow KNO_3(aq) + AgCI(s)$$

 equations which describe the actual ions and molecules in the solutions as well as the molecules of solid, liquid and gas not dissolved are called ionic equations

$$K^{+}_{(aq)} + CI^{-}_{(aq)} + Ag^{+}_{(aq)} + NO_{3}^{-}_{(aq)} \rightarrow K^{+}_{(aq)} + NO_{3}^{-}_{(aq)} + AgCI_{(s)}$$

When gaseous HCI is dissolved in water, each molecule dissociates to produce H⁺ and CI⁻ ions.

Ionic Equations

 ions that are both reactants and products are called spectator ions

$$K^{+}_{(aq)} + CI^{-}_{(aq)} + Ag^{+}_{(aq)} + NO_{3}^{-}_{(aq)} \rightarrow K^{+}_{(aq)} + NO_{3}^{-}_{(aq)} + AgCI_{(s)}$$

 an ionic equation in which the spectator ions are dropped is called a net ionic equation

$$CI_{(aq)} + Ag^{+}_{(aq)} \rightarrow AgCI_{(s)}$$

Electrolytes

- electrolytes are substances whose aqueous solution is a conductor of electricity
- all electrolytes have ions dissolved in water
- in strong electrolytes, virtually all the molecules are dissociated into ions
- in nonelectrolytes, none of the molecules are dissociated into ions
- in weak electrolytes, a small percentage of the molecules are dissociated into ions

Reactions that Form Water: Acids + Bases

- Acids all contain H⁺ cations and an anion
- Bases all contain OH⁻ anions and a cation
- when acids dissociate in water they release H⁺ ions and their anions
- when bases dissociate in water they release OHions and their cations

Acid-Base Reactions

- in the reaction of an acid with a base, the H⁺¹ from the acid combines with the OH⁻¹ from the base to make water
- the cation from the base combines with the anion from the acid to make the salt

$$H_2SO_4(aq) + Ca(OH)_2(aq) \rightarrow CaSO_4(aq) + 2 H_2O(1)$$

the net ionic equation for an Acid-Base reaction is always

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$$

Reactions of Metals with Nonmetals (Oxidation-Reduction)

- The metal loses electrons and becomes a cation
 - We call this process oxidation
- The nonmetal gains electrons and becomes an anion
 - We call this process reduction
- In the reaction, electrons are transferred from the metal to the nonmetal

Oxidation-Reduction Reactions

- All reactions that involve a transfer of one or more electrons are called oxidation-reduction reactions
- We say that the substance that loses electrons in the reaction is oxidized and the substance that gains electrons in the reaction is reduced.

Predicting Products of Metal + Nonmetal Reactions

- metal + nonmetal → ionic compound
 - ionic compounds always solids unless dissolved in water
- in the ionic compound the metal is now a cation
- in the ionic compound the nonmetal is now an anion
- to predict direct synthesis of metal + nonmetal
 - * determine the charges on the cation and anion
 - from their position on the Periodic Table
 - * determine numbers of cations and anions needed to have charges cancel
 - balance the equation

Another Kind of Oxidation-Reduction Reaction

- Some reactions between two non-metals are also oxidation-reduction reaction
- Any reaction in which O₂ is a reactant or a product will be an oxidation-reduction reaction

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

 $2 SO_3(g) \rightarrow 2 SO_2(g) + O_2(g)$

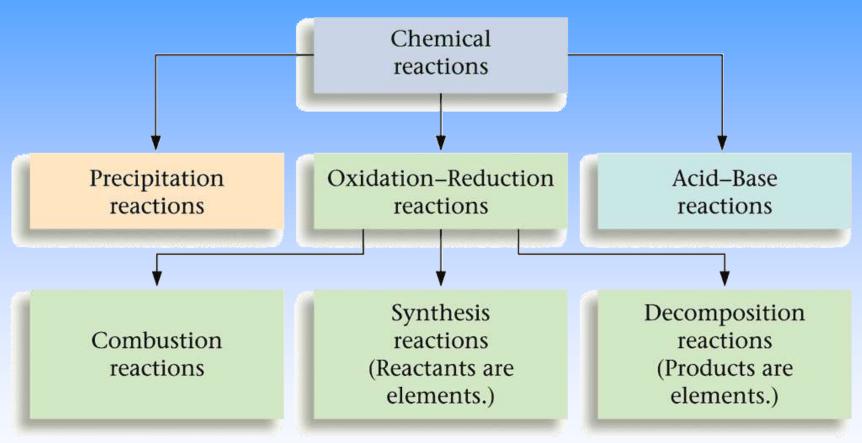
Ways to Classify Reactions

- Reactions that involve solid formation are called precipitation reactions
- Reactions that involve water formation are called acid-base reactions
- Both precipitation reactions and acid-base reactions involve compounds exchanging ions, ion exchange reactions are called double displacement reactions

Double Displacement Reactions

- two ionic compounds exchange ions
- X ⊕Y⁻ (aq) + A ⊕B⁻ (aq) → XB + AY
- reaction will not occur unless one of the products either (1) precipitates, (2) or is water

Ways to Classify Reactions


- Reactions that involve electron transfer are called oxidation-reduction reactions
 - Metals + Nonmetal
 - O₂ as a reactant or product
- Reactions that occur in aqueous solution because one of the products is a gas are called gas forming reactions
 NaHCO₃(aq) + HCl(aq) → NaCl(aq) + CO₂(g) + H₂O(l)

Ways to Classify Reactions

 Reactions that involve one ion being transferred from one cation to another are called single replacement reaction

$$X^{\oplus}Y^{-} + A \rightarrow X + A^{\oplus}Y^{-}$$

 $Zn(s) + 2 HCI(aq) \rightarrow ZnCI_{2}(aq) + H_{2}(g)$
 $Fe_{2}O_{3}(s) + 2 AI(s) \rightarrow 2 Fe(s) + AI_{2}O_{3}(s)$

Figure 7.12: Summary of classes of reactions.

Other Ways to Classify

• Reactions in which O₂(g) is reacted with a carbon compound are called **Combustion Reactions**

- Combustion reactions release a lot of energy
- Combustion reactions are a subclass of Oxidation-Reduction reactions
- Combustion of carbon compounds produces CO₂(g)
- Combustion of compounds that contain hydrogen produces H₂O(g)

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

Other Ways to Classify Reactions

- Reactions in which chemicals combine to make one product are called Synthesis Reactions
- Metal + Nonmetal reactions can be classified as Synthesis Reactions

$$2 \text{ Na(s)} + \text{Cl}_2(g) \rightarrow 2 \text{ NaCl(s)}$$

 Reactions of Metals or Nonmetals with O₂ can be classified as Synthesis Reactions

$$N_2(g) + O_2(g) \rightarrow 2 NO(g)$$

 These two types of Synthesis Reactions are also subclasses of Oxidation-Reduction Reactions

Other Ways to Classify Reactions

- Reactions in which one reactant breaks down into smaller molecules are called Decomposition Reactions
- Generally initiated by addition of energy
 - Addition of electric current or heat
- Opposite of a Synthesis Reaction

$$2 \text{ NaCl(I)} \rightarrow 2 \text{ Na(I)} + \text{Cl}_2(g)$$

electric current