Concentration of Solutions

 and theConcentration/Volume Relationship

CONCENTRATION

Amount of a Substance in a unit
Amount of Solution

WEIGHT Per Unit VOLUME

OR

WEIGHT / VOLUME

GRAMS / LITER or
Milligrams / Liter
mg / L

CONCENTRATION

WEIGHT / VOLUME
Weight per Unit Volume Times
Number of Units of Volume
Equals
Total Weight of Substance in Total Volume of Solution

OR

Concentration X Volume = Weight

One liter of a solution contains 100 mg of phosphorus. How much (Wt.) phosphorus would be in $\mathbf{5 0} \mathbf{~ m L}$ of this solution?

Conc. (mg/L) X Volume (L) = Weight
$100 \mathrm{mg} / \mathrm{L} \times 50 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=\mathrm{Wt}$.
$\frac{100 \mathrm{mg}}{\mathrm{L}} \times \frac{50}{1000} \mathrm{~L}=\mathrm{Wt}$.
$5.0 \mathrm{mg}=\mathrm{Wt}$.

How much phosphorus would be in a solution made by adding enough water to this $\mathbf{5 0} \mathbf{~ m L}$ to dilute it to one liter?

The amount (Wt.) of phosphorus would not change.

5.0 mg of phosphorus would be in the solution.

What would be the concentration of the new solution?

Concentration = Wt./Vol. = mg/L

Concentration $=5.0 \mathrm{mg} / \mathrm{L}$

Conc. (mg/L) X Volume (L) = Weight (mg)
Abbreviated

$$
C \times V=W
$$

When Making a Dilution

Two Solutions

Before and After Adding Water

Conc. (mg/L) X Volume (L) = Weight (mg) When Making a Dilution

Let the Subscript 1 refer to the solution Before dilution and

Let the Subscript 2 refer to the solution After dilution then

$$
\begin{aligned}
& \mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{W}_{1} \\
& \text { and } \\
& \mathrm{C}_{2} \times \mathrm{V}_{2}=\mathrm{W}_{2}
\end{aligned}
$$

BUT

Weight before dilution $=$ Weight after dilution

OR

$$
W_{1}=W_{2}
$$

THEREFORE

$$
\mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{W}_{1}=\mathrm{W}_{2}=\mathrm{C}_{2} \times \mathrm{V}_{2}
$$

$$
\mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2}
$$

EXAMPLE 1

What would be the final concentration of a solution made by diluting 50 mL of a $100 \mathrm{mg} / \mathrm{L}$ phosphorus solution to one Liter'
$\mathrm{C}_{1} \times \quad \mathrm{V}_{1}=\mathrm{C}_{2} \quad \mathrm{X} \quad \mathrm{V}_{2}$

$$
\begin{aligned}
& \mathrm{C}_{1}=\text { Initial Concentration }(\mathrm{mg} / \mathrm{L} \text { or } \mathrm{N}) \\
& \mathrm{V}_{1}=\text { Initial Volume }(\mathrm{mL} \text { or Liter }) \\
& \mathrm{C}_{2}=\text { Final Concentration }(\mathrm{mg} / \mathrm{L} \text { or } \mathrm{N}) \\
& \mathrm{V}_{2}=\text { Final Volume }(\mathrm{mL} \text { or Liter })
\end{aligned}
$$

Note that the terms tell if the value is a Volume or a Concentration
Liter or mL - always Volume (V)
$\underline{\mathrm{mg} / \mathrm{L}}$ or Normality (N) - always Concentration (C)

EXAMPLE 1

What would be the final concentration of a solution made by diluting 50 mL of a $100 \mathrm{mg} / \mathrm{L}$ phosphorus solution to one Liter?

$$
\mathrm{C}_{1} \quad \mathrm{X} \quad \mathrm{~V}_{1}=\mathrm{C}_{2} \quad \mathrm{X} \quad \mathrm{~V}_{2}
$$

$$
\left.\mathrm{C}_{1}=\text { Initial Concentration (mg/L or } \mathrm{N}\right)
$$

$$
\mathrm{V}_{1}=\text { Initial Volume (mL or Liter) }
$$

$$
\mathrm{C}_{2}=\text { Final Concentration }(\mathrm{mg} / \mathrm{L} \text { or } \mathrm{N})
$$

$$
\mathrm{V}_{2}=\text { Final Volume (mL or Liter) }
$$

Note that the terms tell if the value is a Volume or a Concentration
of - links a Concentration with a Volume (Either C_{1} and V_{1} or C_{2} and V_{2})
to - indicates initial (1) and final (2)
water was added to V_{1} OR
V_{1} was diluted to V_{2}

EXAMPLE 1

What would be the final concentration of a solution made by diluting $\mathbf{5 0} \mathbf{~ m L}$ of a $\mathbf{1 0 0} \mathbf{~ m g} / \mathrm{L}$ phosphorus solution to one Liter?

$$
\begin{aligned}
& C_{1} \quad X \quad V_{1}=C_{2} \quad X \quad V_{2} \\
& C_{1}=\text { Initial Concentration (} \mathrm{mg} / \mathrm{L} \text { or } \mathrm{N} \text {) }=100 \mathrm{mg} / \mathrm{L} \\
& \mathrm{~V}_{1}=\text { Initial Volume (} \mathrm{mL} \text { or Liter) } \quad=50 \mathrm{~mL} \\
& \mathrm{C}_{2}=\text { Final Concentration (mg/L or } \mathrm{N} \text {) =? } \\
& \mathrm{V}_{2}=\text { Final Volume (} \mathrm{mL} \text { or Liter) } \quad=1 \text { Liter }=1000 \mathrm{~mL} \\
& 100 \mathrm{mg} / \mathrm{L} \times 50 \mathrm{~mL}=\mathrm{C}_{2} \mathrm{X} 1000 \mathrm{mt} \\
& 1000 \text { Nㅠㄴ } \\
& \frac{100 \times 50}{1000} \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2} \\
& 5.0 \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2}
\end{aligned}
$$

EXAMPLE 2

What would be the final concentration of a solution made by diluting $\mathbf{1 0} \mathbf{~ m L}$ of a $\mathbf{2 5 0} \mathbf{~ m g} / \mathrm{L}$ phosphorus solution to one Liter?

$$
\begin{aligned}
& C_{1} \quad X \quad V_{1}=C_{2} \quad X \quad V_{2} \\
& C_{1}=\text { Initial Concentration (} \mathrm{mg} / \mathrm{L} \text { or } \mathrm{N} \text {) }=250 \mathrm{mg} / \mathrm{L} \\
& \mathrm{~V}_{1}=\text { Initial Volume (} \mathrm{mL} \text { or Liter) } \quad=10 \mathrm{~mL} \\
& \mathrm{C}_{2}=\text { Final Concentration (} \mathrm{mg} / \mathrm{L} \text { or } \mathrm{N} \text {) =? } \\
& \mathrm{V}_{2}=\text { Final Volume (} \mathrm{mL} \text { or Liter) } \quad=1 \text { Liter }=1000 \mathrm{~mL} \\
& \underline{250 \mathrm{mg} / \mathrm{L} \times 10 \mathrm{~mL}}=\underline{\mathrm{C}_{2}} \mathrm{X} 1000 \mathrm{mt} \\
& 1000 \text { Nㅠㄴ } \\
& \frac{250 \times 10}{1000} \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2} \\
& 2.5 \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2}
\end{aligned}
$$

EXAMPLE 3

What would be the final concentration of a solution made by diluting $100 \mathbf{~ m L}$ of a $\mathbf{2 4 . 0} \mathbf{~ m g} / \mathrm{L}$ phosphorus solution with 500 ml of distilled water?

$$
\begin{aligned}
& \mathrm{C}_{1} \quad \mathrm{X} \quad \mathrm{~V}_{1}=\mathrm{C}_{2} \quad \mathrm{X} \quad \mathrm{~V}_{2} \\
& \mathrm{C}_{1}=\text { Initial Concentration (mg/L or } \mathrm{N} \text {) }=24.0 \mathrm{mg} / \mathrm{L} \\
& \mathrm{~V}_{1}=\text { Initial Volume (} \mathrm{mL} \text { or Liter) } \quad=100 \mathrm{~mL} \\
& \mathrm{C}_{2}=\text { Final Concentration (} \mathrm{mg} / \mathrm{L} \text { or } \mathrm{N} \text {) =? } \\
& \mathrm{V}_{2}=\text { Final Volume }(\mathrm{mL} \text { or Liter })=500 \mathrm{~mL}+100 \mathrm{~mL}=600 \mathrm{~mL} \\
& \frac{24.0 \mathrm{mg} / \mathrm{LX} 100 \mathrm{~mL}}{600 \mathrm{~mL}}=\frac{\mathrm{C}_{2} \times 600 \mathrm{~mL}}{-600 \mathrm{~mL}} \\
& \frac{24.0 \times 100}{600} \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2} \\
& 4.0 \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2}
\end{aligned}
$$

EXAMPLE 4

How many milliliters of a $\mathbf{5 0} \mathbf{~ m g} / \mathrm{L}$ phosphorus solution would be needed to make 50 mL of a $2.0 \mathrm{mg} / \mathrm{L}$ solution?

$$
\begin{aligned}
& C_{1} \quad X \quad V_{1}=C_{2} \quad X \quad V_{2} \\
& \mathrm{C}_{1}=\text { Initial Concentration (mg/L or } \mathrm{N} \text {) }=50 \mathrm{mg} / \mathrm{L} \\
& \mathrm{~V}_{1}=\text { Initial Volume (mL or Liter) = ? } \\
& \mathrm{C}_{2}=\text { Final Concentration }(\mathrm{mg} / \mathrm{L} \text { or } \mathrm{N})=2.0 \mathrm{mg} / \mathrm{L} \\
& \mathrm{~V}_{2}=\text { Final Volume (mL or Liter) } \quad=50 \mathrm{~mL} \\
& \frac{50 \mathrm{mg} / \mathrm{L} \times \mathrm{V}_{1}}{50 \mathrm{mg} / \mathrm{L}}=\frac{2.0 \mathrm{mg} / \mathrm{L} X 50 \mathrm{~mL}}{50 \mathrm{mg} / \mathrm{L}} \\
& V_{1}=\frac{2.0 \times 50}{50} \mathrm{~mL} \\
& \mathrm{~V}_{1}=2.0 \mathrm{~mL}
\end{aligned}
$$

Practice Problems

1. What would be the concentration of a solution made up by diluting 5 mL of a $250 \mathrm{mg} / \mathrm{L}$ solution to 100 mL ?
2. 100 mL of a $\mathbf{2 5 ~ m g} / \mathrm{L}$ stock zinc solution is diluted to one Liter. What is the concentration of zinc in the final solution?
3. How many mL of a $500 \mathrm{mg} / \mathrm{L}$ solution are needed to make one liter of a $25 \mathrm{mg} / \mathrm{L}$ solution?
4. $\mathbf{4} \mathrm{mL}$ of a sample was diluted to 100 mL in a volumetric flask. The diluted solution was analyzed and found to have a concentration of $2.0 \mathrm{mg} / \mathrm{L}$. What was the concentration of the original sample?
5. To dilute 100 mL of a $\mathbf{5 0} \mathbf{~ m g} / \mathrm{L}$ solution to get a $\mathbf{2 0} \mathbf{~ m g} / \mathrm{L}$ solution, how much water must be added?
6. How many milliliters of distilled water must be added to 950 mL of
0.01295 N sodium thiosulfate to get a solution with a concentration of 0.0125 N sodium thiosulfate?

Work Calculations on Separate Paper Answers Given on Next Slides

1. What would be the concentration of a solution made up by diluting 5 mL of a $\mathbf{2 5 0} \mathbf{~ m g} / \mathrm{L}$ solution to $\mathbf{1 0 0} \mathrm{mL}$?

$$
\begin{array}{cc}
C_{1} \times V_{1}= & C_{2} \times V_{2} \\
C_{1}= & 250 \mathrm{mg} / \mathrm{L} \\
\mathrm{~V}_{1}= & 5 \mathrm{~mL} \\
\mathrm{C}_{2}= & ? \\
\mathrm{~V}_{2}= & 100 \mathrm{~mL}
\end{array}
$$

$\frac{250 \mathrm{mg} / \mathrm{L} \times 5 \mathrm{mt}}{100 \mathrm{mt}}=\frac{\mathrm{C}_{2} \times 400 \mathrm{mt}}{400 \mathrm{~mL}}$

$$
\frac{250 \times 5}{100} \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2}
$$

$$
12.5 \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2}
$$

2. 100 mL of a $\mathbf{2 5} \mathrm{mg} / \mathrm{L}$ stock zinc solution is diluted to one Liter. What is the concentration of zinc in the final solution?

$$
\begin{gathered}
\mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2} \\
\mathrm{C}_{1}=25 \mathrm{mg} / \mathrm{L} \\
\mathrm{~V}_{1}=100 \mathrm{~mL} \\
\mathrm{C}_{2}=? \\
\mathrm{~V}_{2}=1 \mathrm{~L}=1000 \mathrm{~mL} \\
\frac{25 \mathrm{mg} / \mathrm{L} \times 100 \mathrm{~mL}}{1000 \mathrm{~mL}}=\frac{\mathrm{C}_{2} \times 1000 \mathrm{~mL}}{1000 \mathrm{~mL}} \\
\frac{25 \times 100}{1000} \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2} \\
2.5 \mathrm{mg} / \mathrm{L}=\mathrm{C}_{2}
\end{gathered}
$$

3. How many mL of a $500 \mathrm{mg} / \mathrm{L}$ solution are needed to make one liter of a $\mathbf{2 5 ~ m g} / \mathrm{L}$ solution?

$$
\begin{aligned}
C_{1} & \times V_{1}=C_{2} \times V_{2} \\
C_{1} & =500 \mathrm{mg} / \mathrm{L} \\
V_{1} & =? \\
C_{2} & =25 \mathrm{mg} / \mathrm{L} \\
V_{2} & =1 \text { Liter }=1000 \mathrm{~mL}
\end{aligned}
$$

$500 \mathrm{mg} / \mathrm{L}^{\times} \mathrm{V}_{1}=25 \mathrm{mg} / \mathrm{L} \times 1000 \mathrm{~mL}$ $500 \mathrm{mg} / \mathrm{L} \quad 500 \mathrm{mg} / \mathrm{L}$

$$
V_{1}=\frac{25 \times 1000}{500} \mathrm{~mL}
$$

$$
V_{1}=50 \mathrm{~mL}
$$

4. 4 mL of a sample was diluted to 100 mL in a volumetric flask. The diluted solution was analyzed and found to have a concentration of $2.0 \mathrm{mg} / \mathrm{L}$. What was the concentration of the original sample?

$$
\begin{gathered}
\mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2} \\
\mathrm{C}_{1}=? \\
\mathrm{~V}_{1}=4 \mathrm{~mL} \\
\mathrm{C}_{2}=2.0 \mathrm{mg} / \mathrm{L} \\
\mathrm{~V}_{2}=100 \mathrm{~mL}
\end{gathered}
$$

$$
\frac{C_{1} \times 4 \mathrm{~mL}}{4 \mathrm{~mL}}=\frac{2.0 \mathrm{mg} / \mathrm{L} \times 100 \mathrm{~mL}}{4 \mathrm{~mL}}
$$

$$
C_{1}=\frac{2.0 \times 100}{4} \mathrm{mg} / \mathrm{L}
$$

$$
50.0 \mathrm{mg} / \mathrm{L}=\mathrm{C}_{1}
$$

5. To dilute 100 mL of a $50 \mathrm{mg} / \mathrm{L}$ solution to get a $20 \mathrm{mg} / \mathrm{L}$ solution, how much water must be added?

$$
\begin{aligned}
C_{1} \times V_{1} & =C_{2} \times V_{2} \\
C_{1} & =50 \mathrm{mg} / \mathrm{L} \\
V_{1} & =100 \mathrm{~mL} \\
C_{2} & =20 \mathrm{mg} / \mathrm{L} \\
V_{2} & =?
\end{aligned}
$$

$\frac{50 \mathrm{mg} / \mathrm{L} \times 100 \mathrm{~mL}}{20 \mathrm{mg} / \mathrm{L}}=\frac{20 \mathrm{mg} / \mathrm{Lx} \mathrm{V}_{2}}{20 \mathrm{mg} / \mathrm{L}}$
$\frac{50 \times 100}{20} \mathrm{~mL}=\mathrm{V}_{2}$
$250 \mathrm{~mL}=\mathrm{V}_{2}$
5. To dilute 100 mL of a $50 \mathrm{mg} / \mathrm{L}$ solution to get a $20 \mathrm{mg} / \mathrm{L}$ solution, how much water must be added?

$$
\begin{gathered}
C_{1} \times V_{1}=C_{2} \times V_{2} \\
C_{1}=50 \mathrm{mg} / \mathrm{L} \\
V_{1}=100 \mathrm{~mL} \\
C_{2}=20 \mathrm{mg} / \mathrm{L} \\
\mathrm{~V}_{2}=? \\
250 \mathrm{~mL}=V_{2} \\
-100 \mathrm{~mL} \\
\hline 150 \mathrm{~mL} \text { Water to be Added }
\end{gathered}
$$

6. How many milliliters of distilled water must be added to 950 mL of 0.01295 N sodium thiosulfate to get a solution with a concentration of 0.0125 N sodium thiosulfate?

$$
\begin{gathered}
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2} \\
\frac{0.01295 \mathrm{NX950mL}}{0.0125 \mathrm{~N}}=\frac{0.0125 \mathrm{~N} \times \mathrm{V}_{2}}{0.0125 \mathrm{~N}} \\
\frac{0.01295 \times 950}{0.0125} \mathrm{~mL}=\mathrm{V}_{2} \\
\frac{984.2 \mathrm{~mL}}{\frac{-950.0 \mathrm{~mL}}{34.2 \mathrm{~mL}}}=\mathrm{V}_{2} \\
\text { Water to be } \\
\text { Added }
\end{gathered}
$$

Concentration of Solutions

 and theConcentration/Volume Relationship

