Concentration of Solutions and the **Concentration/Volume** Relationship

Amount of a Substance in a unit Amount of Solution

WEIGHT Per Unit VOLUME

OR

WEIGHT / VOLUME

GRAMS / LITER or Milligrams / Liter

mg/L

CONCENTRATION

WEIGHT / VOLUME

Weight per Unit Volume Times Number of Units of Volume Equals Total Weight of Substance in Total Volume of Solution OR

Concentration X Volume = Weight

One liter of a solution contains 100 mg of phosphorus. How much (Wt.) phosphorus would be in <u>50 mL</u> of this solution?

Conc. (mg/L) X Volume (L) = Weight <u>1 L</u> 1000 mL 100 mg/L X 50 mL X Wt. <u>100 mg</u> Χ = Wt. 1000 5.0 mg = Wt.

How much phosphorus would be in a solution made by adding enough water to this 50 mL to dilute it to one liter?

The amount (Wt.) of phosphorus would not change.

5.0 mg of phosphorus would be in the solution.

What would be the concentration of the new solution?

Concentration = Wt./Vol. = mg/L

Concentration = 5.0 mg/L

Conc. (mg/L) X Volume (L) = Weight (mg)Abbreviated $\mathbf{C} \times \mathbf{V} = \mathbf{W}$ When Making a Dilution **Two Solutions Before and After Adding Water**

Conc. (mg/L) X Volume (L) = Weight (mg) When Making a Dilution

Let the Subscript 1 refer to the solution Before dilution and

Let the Subscript 2 refer to the solution After dilution then

$$C_1 X V_1 = W_1$$

and
$$C_2 X V_2 = W_2$$

Weight before dilution = Weight after dilution

OR $W_1 = W_2$ **THEREFORE** $C_1 X V_1 = W_1 = W_2 = C_2 X V_2$ and $C_1 X V_1 = C_2 X V_2$

What would be the final concentration of a solution made by diluting 50 mL of a 100 mg/L phosphorus solution to one Liter? $C_1 \times V_1 = C_2 \times V_2$

- $C_1 = Initial Concentration (mg/L or N)$
- $V_1 =$ Initial Volume (mL or Liter)
- $C_2 =$ Final Concentration (mg/L or N)
- $V_2 =$ Final Volume (mL or Liter)

Note that the terms tell if the value is a Volume or a Concentration

<u>Liter</u> or <u>mL</u> – always Volume (V)

<u>mg/L</u> or <u>Normality (N)</u> – always Concentration (C)

What would be the final concentration of a solution made by diluting 50 mL of a 100 mg/L phosphorus solution to one Liter?

$$\mathbf{C}_1 \quad \mathbf{X} \quad \mathbf{V}_1 = \mathbf{C}_2 \quad \mathbf{X} \quad \mathbf{V}_2$$

$$C_1$$
 = Initial Concentration (mg/L or N)
 V_1 = Initial Volume (mL or Liter)
 C_2 = Final Concentration (mg/L or N)
 V_2 = Final Volume (mL or Liter)

Note that the terms tell if the value is a Volume or a Concentration

<u>of</u> – links a Concentration with a Volume (Either C_1 and V_1 or C_2 and V_2)

to – indicates initial (1) and final (2)

```
water was added <u>to</u> V_1
OR
V_1 was diluted <u>to</u> V_2
```

What would be the final concentration of a solution made by diluting 50 mL of a 100 mg/L phosphorus solution to one Liter?

$$C_{1} X V_{1} = C_{2} X V_{2}$$

$$C_{1} = \text{Initial Concentration (mg/L or N)} = 100 \text{ mg/L}$$

$$V_{1} = \text{Initial Volume (mL or Liter)} = 50 \text{ mL}$$

$$C_{2} = \text{Final Concentration (mg/L or N)} = ?$$

$$V_{2} = \text{Final Volume (mL or Liter)} = 1 \text{ Liter} = 1000 \text{ mL}$$

$$\frac{100 \text{ mg/L} X 50 \text{ mL}}{1000 \text{ mL}} = \frac{C_{2} X 1000 \text{ mL}}{1000 \text{ mL}}$$

$$\frac{100 \text{ X} 50}{1000} \text{ mg/L} = C_{2}$$

$$5.0 \text{ mg/L} = C_{2}$$

What would be the final concentration of a solution made by diluting 10 mL of a 250 mg/L phosphorus solution to one Liter?

$$C_{1} X V_{1} = C_{2} X V_{2}$$

$$C_{1} = \text{Initial Concentration (mg/L or N)} = 250 \text{ mg/L}$$

$$V_{1} = \text{Initial Volume (mL or Liter)} = 10 \text{ mL}$$

$$C_{2} = \text{Final Concentration (mg/L or N)} = ?$$

$$V_{2} = \text{Final Volume (mL or Liter)} = 1 \text{ Liter} = 1000 \text{ mL}$$

$$\frac{250 \text{ mg/L} X 10 \text{ mL}}{1000 \text{ mL}} = \frac{C_{2} X 1000 \text{ mL}}{1000 \text{ mL}}$$

$$\frac{250 \text{ X} 10}{1000} \text{ mg/L} = C_{2}$$

$$2.5 \text{ mg/L} = C_{2}$$

What would be the final concentration of a solution made by diluting 100 mL of a 24.0 mg/L phosphorus solution with 500 ml of distilled water?

$$\mathbf{C}_1 \quad \mathbf{X} \quad \mathbf{V}_1 = \mathbf{C}_2 \quad \mathbf{X} \quad \mathbf{V}_2$$

$$\frac{24.0 \text{ mg/L X} 100 \text{ mL}}{600 \text{ mL}} = \frac{C_2 \text{ X} 600 \text{ mL}}{600 \text{ mL}}$$

$$\frac{24.0 \text{ X} 100}{600} \text{ mg/L} = C_2$$

$$4.0 \text{ mg/L} = C_2$$

How many milliliters of a 50 mg/L phosphorus solution would be needed to make 50 mL of a 2.0 mg/L solution?

$$C_{1} X V_{1} = C_{2} X V_{2}$$

$$C_{1} = \text{Initial Concentration (mg/L or N)} = 50 \text{ mg/L}$$

$$V_{1} = \text{Initial Volume (mL or Liter)} = ?$$

$$C_{2} = \text{Final Concentration (mg/L or N)} = 2.0 \text{ mg/L}$$

$$V_{2} = \text{Final Volume (mL or Liter)} = 50 \text{ mL}$$

$$\frac{50 \text{ mg/L} X V_{1}}{50 \text{ mg/L}} = \frac{2.0 \text{ mg/L} X 50 \text{ mL}}{50 \text{ mg/L}}$$

$$V_{1} = \frac{2.0 \text{ X 50}}{50} \text{ mL}$$

$$V_{1} = 2.0 \text{ mL}$$

Practice Problems

- 1. What would be the concentration of a solution made up by diluting 5 mL of a 250 mg/L solution to 100 mL?
 - 2. 100 mL of a 25 mg/L stock zinc solution is diluted to one Liter. What is the concentration of zinc in the final solution?
- 3. How many mL of a 500 mg/L solution are needed to make one liter of a 25 mg/L solution?
- 4. 4 mL of a sample was diluted to 100 mL in a volumetric flask. The diluted solution was analyzed and found to have a concentration of 2.0 mg/L. What was the concentration of the original sample?
 - 5. To dilute 100 mL of a 50 mg/L solution to get a 20 mg/L solution, how much water must be added?
- 6. How many milliliters of distilled water must be added to 950 mL of 0.01295 N sodium thiosulfate to get a solution with a concentration of 0.0125 N sodium thiosulfate?

Work Calculations on Separate Paper Answers Given on Next Slides

1. What would be the concentration of a solution made up by diluting 5 mL of a 250 mg/L solution to 100 mL?

 $C_1 \times V_1 = C_2 \times V_2$ $C_1 = 250 \text{ mg/L}$ $V_1 = 5 mL$ $C_2 = ?$ $V_2 = 100 \text{ mL}$ 250 mg/L X 5 mL = C_2 X 100 mL 100-mL $\frac{250 \times 5}{1000}$ mg/L = C₂ 100 $12.5 \text{ mg/L} = C_2$

2. 100 mL of a 25 mg/L stock zinc solution is diluted to one Liter. What is the concentration of zinc in the final solution?

$$C_{1} \times V_{1} = C_{2} \times V_{2}$$

$$C_{1} = 25 \text{ mg/L}$$

$$V_{1} = 100 \text{ mL}$$

$$C_{2} = ?$$

$$V_{2} = 1 \text{ L} = 1000 \text{ mL}$$

$$\frac{25 \text{ mg/L} \times 100 \text{ mL}}{1000 \text{ mL}} = \frac{C_{2} \times 1000 \text{ mL}}{1000 \text{ mL}}$$

$$\frac{25 \times 100}{1000} \text{ mg/L} = C_{2}$$

$$2.5 \text{ mg/L} = C_{2}$$

3. How many mL of a 500 mg/L solution are needed to make one liter of a 25 mg/L solution?

 $C_1 \times V_1 = C_2 \times V_2$ $C_1 = 500 \text{ mg/L}$ $V_1 = ?$ $C_2 = 25 \text{ mg/L}$ $V_2 = 1$ Liter = 1000 mL $500 \text{ mg/L x V}_1 = 25 \text{ mg/L x 1000 mL}$ 500 mg/L 500 mg/L $V_1 = \frac{25 \times 1000}{500} \text{ mL}$ $V_1 = 50 \, mL$

4 mL of a sample was diluted to 100 mL in a volumetric flask. The diluted solution was analyzed and found to have a concentration of 2.0 mg/L. What was the concentration of the original sample?

$$C_{1} \times V_{1} = C_{2} \times V_{2}$$

$$C_{1} = ?$$

$$V_{1} = 4 \text{ mL}$$

$$C_{2} = 2.0 \text{ mg/L}$$

$$V_{2} = 100 \text{ mL}$$

$$\frac{C_{1} \times 4 \text{ mL}}{4 \text{ mL}} = \frac{2.0 \text{ mg/L} \times 100 \text{ mL}}{4 \text{ mL}}$$

$$C_{1} = \frac{2.0 \times 100}{4} \text{ mg/L}$$

$$50.0 \text{ mg/L} = C_{1}$$

5. To dilute 100 mL of a 50 mg/L solution to get a 20 mg/L solution, how much water must be added?

 $C_1 \times V_1 = C_2 \times V_2$ $C_1 = 50 \text{ mg/L}$ $V_1 = 100 \text{ mL}$ $C_2 = 20 \text{ mg/L}$ $V_2 = ?$ $50 \text{ mg/L x } 100 \text{ mL} = 20 \text{ mg/L x } V_2$ 20 mg/L 20 mg/L $\frac{50 \times 100}{100} \text{ mL} = V_2$ 20 $250 \text{ mL} = V_2$

5. To dilute 100 mL of a 50 mg/L solution to get a 20 mg/L solution, how much water must be added?

$$C_{1} \times V_{1} = C_{2} \times V_{2}$$

$$C_{1} = 50 \text{ mg/L}$$

$$V_{1} = 100 \text{ mL}$$

$$C_{2} = 20 \text{ mg/L}$$

$$V_{2} = ?$$

$$\frac{250 \text{ mL}}{100 \text{ mL}} = V_{2}$$

$$\frac{-100 \text{ mL}}{150 \text{ mL}}$$
Water to be Added

6. How many milliliters of distilled water must be added to 950 mL of 0.01295 N sodium thiosulfate to get a solution with a concentration of 0.0125 N sodium thiosulfate?

Concentration of Solutions and the **Concentration/Volume** Relationship